
Lecture Notes, January 11, 2012

Mathematical Logic

Logical Inference
Let A and B be two logical conditions, like A="it's sunny today" and B="the light

outside is very bright" 
A ⇒  B
     A implies B, if A then B

A  ⇔ B
      A if and only if B, A implies B and B implies A,  A and B are equivalent conditions

Proofs
Just like in high school geometry.  

Concept of Proof by contradiction:  Suppose we want to show that A ⇒  B.  Ordinarily, we'd
like to prove this directly.  But it may be easier to show that [not (A ⇒  B)] is false.
How?  Show that [A & (not B)] leads to a contradiction.  A: x = 1,  B:x+3=4.  Then 
[A & (not B)] leads to the conclusion that 1+3≠4 or equivalently 1≠1, a contradiction.

Hence [A & (not B)] must fail so A⇒  B.  (Yes, it does feel backwards, like your pocket
is being picked, but it works).  

Set Theory

Definition of a Set
{ }
{x | x has property P} 
{1, 2, ..., 9, 10}  =  { x | x is an integer,  1≤  x  ≤ 10 }.    

Elements of a set
x ∈ A ;   y ∉ A
x ≠ { x }
 x ∈ { x }
φ ≡ the empty set (≡ null set), the set with no elements. 

Subsets
 if x ∈ A  ⇒ x ∈ BA ⊂ B or A ⊆ B

. A ⊂ A and φ ⊂ A

Set Equality
 A = B if A and B have precisely the same elements
A = B if and only if  .A ⊂ B and B ⊂ A
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Set Union
A ∪ B

  ('or' includes 'and')   A ∪ B = {x x ∈ A or x ∈ B}

Set  Intersection 
 ∩

  A ∩ B = {x x ∈ A and x ∈ B}
If  we say that A and B are disjoint. A ∩ B = φ

Theorem 6.1:  Let A, B, C be sets,
a. (idempotency)A ∩ A = A, A ∪ A = A
b. (commutativity)A ∩ B = B ∩ A, A ∪ B = B ∪ A
c. (associativity)A ∩ (B ∩ C) = (A ∩ B) ∩ C

A ∪ (B ∪ C) = (A ∪ B) ∪ C
d. (distributivity)A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Complementation (set subtraction)
\
A\B = {x x ∈ A, x ∉ B}

Cartesian Product
ordered pairs 
 .  A x B = {(x, y) x ∈ A, y ∈ B}
Note: If  x ≠ y, then  (x, y) ≠ (y, x) .

R = The set of real numbers 
RN = N-fold Cartesian product of R with itself.  
RN =  R x R x R x ... x R, where the product is taken N times.  
The order of elements in the ordered N-tuple (x, y, ...) is essential.  If  

.x ≠ y, (x, y, …) ≠ (y, x, …)

 RN , Real N-dimensional Euclidean space

Read Starr's General Equilibrium Theory, Chapter 7.  

R2  =  plane 
R3  =  3-dimensional space
RN = N-dimensional Euclidean space 

Definition of R:
R = the real line 
  R±∞ ∉
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closed interval :  [a, b] ≡ {x| x ∈ R, a ≤ x ≤ b}.  

R is complete.  Nested intervals property: Let  xν < yν  and [xν+1 , yν+1 ] ⊆ [xν , yν ] , 
ν = 1, 2, 3, ... .  Then there is z ∈ R so that z ∈ [xν , yν ] , for all ν .

 = N-fold Cartesian product of R.RN

 ,  x ∈ RN x = (x1, x2, …, xN)
xi  is the ith co-ordinate of x. 
x  =  point (or vector) in RN 

Algebra of elements of RN

x + y = (x1 + y1, x2 + y2, …, xN + yN)

0 = (0, 0, 0, ..., 0) , the origin in N-space

= (x1-y1, x2-y2, ..., xN-yN)  x − y ≡ x + (−y)

.  t ∈ R, x ∈ RN, then tx ≡ (tx1, tx2, …, txN)

   .  If p ∈ RN is a price vector and y ∈RN is an economic action,x, y ∈ RN, x ⋅ y =
N

i=1
Σ xiyi

then p ⋅ y =  is the value of the action y at prices p.  Σ
n=1

N
pnyn

Norm in  RN, the measure of distance

 .x ≡ x ≡ x ⋅ x ≡
i=1

N
Σ xi

2

Let  .  The distance between  x and y is . x, y ∈ RN x − y
 
| x - y | =  . Σ i(xi − yi)2

 x − y ≥ 0 all x, y ∈ RN

| x - y |  = 0 if and only if x = y.  

Limits of Sequences
 xν  , ν = 1, 2, 3, ... , 
Example:  xν  = 1/ ν.    1, 1/2, 1/3, 1/4, 1/5, ... .    xν  → 0 .  

Formally, let .   Definition: We say if for any , there isxi ∈ R, i = 1, 2, … xi → x0 ε > 0
so  that for all .  q(ε) q > q(ε), xq − x0 < ε
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So in the example  xν  = 1/ ν, q(ε) = 1/ε

 Let .  We say that  if for each co-ordinatexi ∈ RN, i = 1, 2, … xi → x0

.n = 1, 2, …, N, xn
i → xn

0

Theorem 7.1:  Let .  Then   if and only if for any  therexi ∈ RN, i = 1, 2, … xi → x0 ε
is  such that for all .q(ε) q > q(ε), xq − x0 < ε

xo is a cluster point of S ⊆ RN if there is a sequence xν∈ RN so that xν →xo. 

Open Sets
Let ;  X is open if for every  there is an   so that impliesX ⊂ RN x ∈ X ε > 0 x − y < ε

.y ∈ X

Open interval in R:  (a, b) = { x | x ∈ R, a < x < b} 

 are open.  φ and RN

Closed Sets
Example:  Problem - Choose a point x in the closed interval [a, b] (where 0 < a < b) to

maximize x2. Solution:  x = b.
Problem - Choose a point x in the open interval (a, b)  to maximize x2. There is no
solution in  (a, b) since b ∉ (a, b). 

A set is closed if it contains all of its cluster points.  

Definition:  Let .  X is said to be a closed set if for every sequence xν, ν = 1, 2,X ⊂ RN

3, ... , satisfying,
(i) , and xν ∈ X
(ii) ,xν → x0

 it follows that .  x0 ∈ X

Examples:  A closed interval in R, [a, b] is closed
A closed ball in RN of radius r, centered at c∈RN, {x∈RN|  |x-c| ≤ r} is a closed

set.
A line in RN is a closed set
But a set may be neither open nor closed (for example the sequence {1/ν}, ν=1,

2, 3, 4, ...  is not closed in R, since 0 is a limit point of the sequence but is not an element
of the sequence; it is not open since it consists of isolated points).
  
Note: Closed and open are not antonyms among sets. are each both closed andφ and RN

open.     For a YouTube reference: www.youtube.com/watch?v=SyD4p8_y8Kw
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Let X ⊆  RN. The closure of X is defined as
   ≡ { y | there is xν ∈ X, ν = 1, 2, 3, ... , so that  xν → y }.  X
For example the closure of the sequence in R,  {1/ν | ν=1, 2, 3, 4, ... } is

 {0}∪{1/ν | ν=1, 2, 3, 4, ... }.

Theorem 7.2:  Let .  X is closed if  RN \ X  is open.X ⊂ RN

Proof:  Suppose RN \ X  is open.  We must show that X is closed.  If X=RN the result is
trivially satisfied.  For X≠RN, let xν ∈ X, xν→xo.  We must show that xo∈ X if  RN \ X  is
open.  Proof by contradiction.  Suppose not.  Then xo∈ RN \ X.  But RN \ X is open.  Thus
there is an ε neighborhood about xo entirely contained in RN \ X.  But then for ν large,
 xν ∈ RN \ X, a contradiction.  Therefore xo∈ X and X is closed.  QED

Theorem 7.3: 1. X ⊂ X
2.  if and only if X is closed.X = X

Bounded Sets
Def:  = cube of side 2k (centered at theK(k) = {x x ∈ RN, xi ≤ k, i = 1, 2, …, N}
origin).
Def:  .   X is bounded if there is so that .X ⊂ RN k ∈ R X ⊂ K(k)

Compact Sets
THE IDEA OF COMPACTNESS IS ESSENTIAL!

Def:  .   X is compact if X is closed and bounded.X ⊂ RN

Finite subcover property:  An open covering of X is a collection of open sets so that X is
contained in the union of the collection.  It is a property of compact X that for every
 open covering there is a finite subset of the open covering whose union also contains
X.  That is, every open covering of a compact set has a finite subcover.  

Boundary, Interior, etc.
, Interior of X = , there is  so that  implies X ⊂ RN {y y ∈ X ε > 0 x − y < ε x ∈ X}

Boundary X ≡ X\Interior X

Set Summation in RN

Let A ⊆ RN, B ⊆ RN.  Then 
 A + B ≡ { x | x = a + b, a ∈ A, b ∈ B }.  

The Bolzano-Weierstrass Theorem, Completeness of .RN

Theorem 7.4 (Nested Intervals Theorem):  By an interval in , we mean a set I of theRN

form , .I = {(x1, x2, …, xN) a1 ≤ x1 ≤ b1 a2 ≤ x2 ≤ b2, …, aN ≤ xN ≤ bN, ai, bi ∈ R}
Consider a sequence of nonempty closed intervals such thatIk

.I1 ⊇ I2 ⊇ I3 ⊇ … ⊇ Ik ⊇ …
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Then there is a point in  contained in all the intervals. That is,  andRN ∃xo ∈
i=1

∞
Ii

therefore  ; the intersection is nonempty. 
i=1

∞
Ii ≠ φ

Proof:  Follows from the completeness of the reals, the nested intervals property on R.

Corollary  (Bolzano-Weierstrass theorem for sequences):  Let , i = 1, 2, 3, ...  be axi

bounded sequence in . Then  contains a convergent subsequence.RN xi

Proof  2 cases:   assumes a finite number of values,  assumes an infinite number ofxi xi

values.

It follows from the Bolzano-Weierstrass Theorem for sequences and the definition of
compactness that an infinite sequence on a compact set has a convergent subsequence
whose limit is in the compact set.  
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