Economics 113, UCSD Winter 2012

Lecture Notes, January 11, 2012

Mathematical Logic

Logical Inference

Let A and B be two logical conditions, like A="it's sunny today" and B="the light outside is very bright"

 $A \Rightarrow B$

A implies B, if A then B

 $A \Leftrightarrow B$

A if and only if B, A implies B and B implies A, A and B are equivalent conditions

<u>Proof</u>s

Just like in high school geometry.

<u>Concept of Proof by contradiction</u>: Suppose we want to show that A ⇒ B. Ordinarily, we'd like to prove this directly. But it may be easier to show that [not (A ⇒ B)] is false. How? Show that [A & (not B)] leads to a contradiction. A: x = 1, B:x+3=4. Then [A & (not B)] leads to the conclusion that 1+3≠4 or equivalently 1≠1, a contradiction. Hence [A & (not B)] must fail so A⇒ B. (Yes, it does feel backwards, like your pocket is being picked, but it works).

Set Theory

Definition of a <u>Set</u> { } {x | x has property P} {1, 2, ..., 9, 10} = { x | x is an integer, $1 \le x \le 10$ }.

Elements of a set

 $x \in A$; $y \notin A$ $x \neq \{x\}$ $x \in \{x\}$ $\phi \equiv$ the empty set (= null set), the set with no elements.

Subsets

 $A \subset B \text{ or } A \subseteq B \text{ if } x \in A \implies x \in B$ $A \subset A \text{ and } \phi \subset A \text{ .}$

Set Equality

A = B if A and B have precisely the same elements A = B if and only if $A \subset B$ and $B \subset A$. Economics 113, UCSD Winter 2012

Set Union

 $A \cup B$ $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ ('or' includes 'and')

Set Intersection

 $\bigcap_{A \cap B} = \{x \mid x \in A \text{ and } x \in B\}$ If $A \cap B = \phi$ we say that A and B are disjoint.

Theorem 6.1: Let A, B, C be sets,

a.	$A \cap A = A, A \cup A = A$	(idempotency)
b.	$A \cap B = B \cap A, \ A \cup B = B \cup A$	(commutativity)
c.	$A \cap (B \cap C) = (A \cap B) \cap C$	(associativity)
	$A \cup (B \cup C) = (A \cup B) \cup C$	
d.	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	(distributivity)
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	

Complementation (set subtraction)

$$A \mid B = \{ x \mid x \in A, x \notin B \}$$

Cartesian Product

ordered pairs $A \ x \ B = \{(x, \ y) \mid x \in A, \ y \in B\}$. Note: If $x \neq y$, then $(x, y) \neq (y, x)$.

R = The set of real numbers **R**^N = N-fold Cartesian product of R with itself. **R**^N = R x R x R x ... x R, where the product is taken N times. The order of elements in the ordered N-tuple (x, y, ...) is essential. If $x \neq y, (x, y, ...) \neq (y, x, ...)$.

\mathbf{R}^{N} , Real N-dimensional Euclidean space

Read Starr's General Equilibrium Theory, Chapter 7.

 R^2 = plane R^3 = 3-dimensional space R^N = N-dimensional Euclidean space

Definition of R: R = the real line $\pm \infty \notin R$

 $+, -, \times, \div$

closed interval : $[a, b] \equiv \{x | x \in R, a \le x \le b\}.$

R is *complete*. Nested intervals property: Let $x^{\nu} < y^{\nu}$ and $[x^{\nu+1}, y^{\nu+1}] \subseteq [x^{\nu}, y^{\nu}]$, $\nu = 1, 2, 3, ...$ Then there is $z \in R$ so that $z \in [x^{\nu}, y^{\nu}]$, for all ν .

 R^N = N-fold Cartesian product of R. $x \in R^N$, $x = (x_1, x_2, ..., x_N)$

 x_i is the ith co-ordinate of x. x = point (or *vector*) in R^N

Algebra of elements of R^N

 $x + y = (x_1 + y_1, x_2 + y_2, ..., x_N + y_N)$

 $\mathbf{0} = (0, 0, 0, ..., 0)$, the origin in N-space

 $x - y \equiv x + (-y) = (x_1 - y_1, x_2 - y_2, ..., x_N - y_N)$

 $t \in \mathbb{R}, x \in \mathbb{R}^N$, then $tx \equiv (tx_1, tx_2, ..., tx_N)$.

 $x, y \in \mathbb{R}^N, x \cdot y = \sum_{i=1}^N x_i y_i$. If $p \in \mathbb{R}^N$ is a price vector and $y \in \mathbb{R}^N$ is an economic action, then $p \cdot y = \sum_{n=1}^N p_n y_n$ is the value of the action y at prices p.

Norm in \mathbb{R}^{N} , the measure of distance

$$|x| \equiv ||x|| \equiv \sqrt{x \cdot x} \equiv \sqrt{\sum_{i=1}^{N} x_i^2}$$

Let $x, y \in \mathbb{R}^N$. The distance between x and y is ||x - y||.

$$|\mathbf{x} - \mathbf{y}| = \sqrt{\sum_{i} (x_i - y_i)^2} .$$

$$\|\mathbf{x} - \mathbf{y}\| \ge 0 \text{ all } x, \ \mathbf{y} \in \mathbb{R}^N$$

$$|\mathbf{x} - \mathbf{y}| = 0 \text{ if and only if } \mathbf{x} = \mathbf{y}.$$

Limits of Sequences

 x^{ν} , $\nu = 1, 2, 3, ...$, Example: $x^{\nu} = 1/\nu$. 1, 1/2, 1/3, 1/4, 1/5, $x^{\nu} \rightarrow 0$.

Formally, let $x^i \in R$, i = 1, 2, ... Definition: We say $x^i \to x^0$ if for any $\varepsilon > 0$, there is $q(\varepsilon)$ so that for all $q' > q(\varepsilon)$, $|x^{q'} - x^0| < \varepsilon$.

So in the example $x^{\nu} = 1/\nu$, $q(\varepsilon) = 1/\varepsilon$

Let $x^i \in \mathbb{R}^N$, i = 1, 2, We say that $x^i \to x^0$ if for each co-ordinate $n = 1, 2, ..., N, x_n^i \to x_n^0$.

Theorem 7.1: Let $x^i \in \mathbb{R}^N$, i = 1, 2, ... Then $x^i \to x^0$ if and only if for any ε there is $q(\varepsilon)$ such that for all $q' > q(\varepsilon)$, $||x^{q'} - x^0|| < \varepsilon$.

 x° is a *cluster point* of $S \subseteq \mathbf{R}^{N}$ if there is a sequence $x^{\vee} \in \mathbf{R}^{N}$ so that $x^{\vee} \rightarrow x^{\circ}$.

Open Sets

Let $X \subset \mathbb{R}^N$; X is *open* if for every $x \in X$ there is an $\varepsilon > 0$ so that $||x - y|| < \varepsilon$ implies $y \in X$.

Open interval in R: $(a, b) = \{ x \mid x \in R, a < x < b \}$

 ϕ and \mathbb{R}^N are open.

Closed Sets

Example: Problem - Choose a point x in the closed interval [a, b] (where 0 < a < b) to maximize x². Solution: x = b.
Problem - Choose a point x in the open interval (a, b) to maximize x². There is no solution in (a, b) since b ∉ (a, b).

A set is closed if it contains all of its cluster points.

Definition: Let $X \subset \mathbb{R}^N$. X is said to be a **<u>closed</u>** set if for every sequence x^v , v = 1, 2, 3, ..., satisfying,

(i) $x^{\vee} \in X$, and (ii) $x^{\vee} \to x^{0}$ it follows that $x^{0} \in X$.

Examples: A closed interval in R, [a, b] is closed

A closed ball in \mathbb{R}^N of radius r, centered at $c \in \mathbb{R}^N$, $\{x \in \mathbb{R}^N | |x-c| \le r\}$ is a closed set.

A line in $\mathbb{R}^{\mathbb{N}}$ is a closed set

<u>But</u> a set may be neither open nor closed (for example the sequence $\{1/\nu\}$, $\nu=1$, 2, 3, 4, ... is not closed in R, since 0 is a limit point of the sequence but is not an element of the sequence; it is not open since it consists of isolated points).

Note: Closed and open are not antonyms among sets. ϕ and R^N are each both closed and open. For a YouTube reference: www.youtube.com/watch?v=SyD4p8_y8Kw

Let $X \subseteq \mathbb{R}^{\mathbb{N}}$. The closure of X is defined as $\overline{X} \equiv \{ y \mid \text{there is } x^{\nu} \in X, \nu = 1, 2, 3, ..., \text{ so that } x^{\nu} \rightarrow y \}.$ For example the closure of the sequence in R, $\{1/\nu \mid \nu=1, 2, 3, 4, ...\}$ is $\{0\} \cup \{1/\nu \mid \nu=1, 2, 3, 4, ...\}.$

Theorem 7.2: Let $X \subset \mathbb{R}^N$. X is closed if $\mathbb{R}^N \setminus X$ is open.

Proof: Suppose $\mathbb{R}^N \setminus X$ is open. We must show that X is closed. If $X=\mathbb{R}^N$ the result is trivially satisfied. For $X \neq \mathbb{R}^N$, let $x^{\nu} \in X$, $x^{\nu} \rightarrow x^{\circ}$. We must show that $x^{\circ} \in X$ if $\mathbb{R}^N \setminus X$ is open. Proof by contradiction. Suppose not. Then $x^{\circ} \in \mathbb{R}^N \setminus X$. But $\mathbb{R}^N \setminus X$ is open. Thus there is an ε neighborhood about x° entirely contained in $\mathbb{R}^N \setminus X$. But then for ν large, $x^{\nu} \in \mathbb{R}^N \setminus X$, a contradiction. Therefore $x^{\circ} \in X$ and X is closed. QED

Theorem 7.3: 1. $X \subset \overline{X}$ 2. $X = \overline{X}$ if and only if X is closed.

Bounded Sets

Def: $K(k) = \{x | x \in \mathbb{R}^N, |x_i| \le k, i = 1, 2, ..., N\}$ = cube of side 2k (centered at the origin).

Def: $X \subset \mathbb{R}^N$. X is *bounded* if there is $k \in \mathbb{R}$ so that $X \subset K(k)$.

Compact Sets

THE IDEA OF COMPACTNESS IS ESSENTIAL!

Def: $X \subset \mathbb{R}^N$. X is *compact* if X is closed and bounded. <u>Finite subcover property</u>: An open covering of X is a collection of open sets so that X is contained in the union of the collection. It is a property of compact X that for every open covering there is a finite subset of the open covering whose union also contains

X. That is, every open covering of a compact set has a finite subcover.

Boundary, Interior, etc.

 $X \subset \mathbb{R}^N$, Interior of $X = \{y | y \in X \text{, there is } \varepsilon > 0 \text{ so that } ||x - y|| < \varepsilon \text{ implies } x \in X\}$ Boundary $X = \overline{X} \setminus \text{Interior } X$

Set Summation in R^N

Let $A \subseteq \mathbb{R}^{\mathbb{N}}$, $B \subseteq \mathbb{R}^{\mathbb{N}}$. Then $A + B \equiv \{ x \mid x = a + b, a \in A, b \in B \}.$

The Bolzano-Weierstrass Theorem, Completeness of R^N .

Theorem 7.4 (Nested Intervals Theorem): By an interval in \mathbb{R}^N , we mean a set I of the form $I = \{(x_1, x_2, ..., x_N) | a_1 \le x_1 \le b_1, a_2 \le x_2 \le b_2, ..., a_N \le x_N \le b_N, a_i, b_i \in \mathbb{R}\}$. Consider a sequence of nonempty closed intervals I_k such that $I_1 \supseteq I_2 \supseteq I_3 \supseteq ... \supseteq I_k \supseteq ...$.

Then there is a point in \mathbb{R}^N contained in all the intervals. That is, $\exists x^o \in \bigcap_{i=1}^{\infty} I_i$ and therefore $\bigcap_{i=1}^{\infty} I_i \neq \phi$; the intersection is nonempty.

Proof: Follows from the completeness of the reals, the nested intervals property on R.

Corollary (Bolzano-Weierstrass theorem for sequences): Let x^i , i = 1, 2, 3, ... be a bounded sequence in R^N . Then x^i contains a convergent subsequence.

Proof 2 cases: x^i assumes a finite number of values, x^i assumes an infinite number of values.

It follows from the Bolzano-Weierstrass Theorem for sequences and the definition of compactness that an infinite sequence on a compact set has a convergent subsequence whose limit is in the compact set.